ОРГАНИЗАЦИЯ СОТРУДНИЧЕСТВА ЖЕЛЕЗНЫХ ДОРОГ (ОСЖД)

II издание

Разработано экспертами Комиссии ОСЖД по инфраструктуре и подвижному составу 1-3 октября 2019 г., Комитет ОСЖД, г. Варшава

P 544/8

Утверждено совещанием Комиссии ОСЖД по инфраструктуре и подвижному составу 5-7 ноября 2019 г., Комитет ОСЖД, г. Варшава

Дата вступления в силу: 7 ноября 2019 г.

Примечание: Теряет силу I издание Памятки от 08.10.1999 г.

ТОРМОЗНЫЕ СИСТЕМЫ ВАГОНОВ И МЕТОДЫ АНАЛИТИЧЕСКОГО ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПАРАМЕТРОВ ПРИ ПРОЕКТИРОВАНИИ ДЛЯ КОЛЕИ 1435 м

СОДЕРЖАНИЕ

- 1. Определение основных параметров колодных тормозных систем грузовых вагонов.
- 2. Определение основных параметров высокомощных тормозных систем вагонов с чугунными колодками
 - 2.1. Общие определения
 - 2.2. Аналитическое определение основных параметров TC типа $P_1\,R$
 - 2.3. Номографическое определение параметров
 - 2.4. Определение тормозных масс B_{R1P} при отсутствии ускорителей тормозных процессов.
- 3. Определение основных параметров дисковых тормозных систем
 - 3.1. Общие определения
 - 3.2. Аналитические расчеты ДСТ через С-параметров
 - 3.3. Номографическое решение ДТС
 - 3.4. Определение тормозных масс ДТС "К_p" коэффициентом
 - 3.5. Определение тормозных масс вагонов при отсутствии ускорителей тормозных процессов

ПРИЛОЖЕНИЯ 1-11

Настоящая Памятка разработана с учетом памяток ОСЖД Р 544-1, 544-2, Р 544-3, Р 544-4, Р 544-5 и памяток МСЖД ОК 544-1, ОК 546.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

АБС - антиблокирующая система (противоюзная система); - автоматическая, пневматическая тормозная система;

АРТС - автоматический регулятор тормозной рычажной системы;

ДТС - дисковая тормозная система; КК - композиционные колодки; КТС - колодочная тормозная система;

КПУ - коэффициент потери усилия в рычажной ТС;

Нк - накладки для ДТС;

PB - режим воздухораспределителя; PTC - рычажная тормозная система;

ТМ - тормозная масса;ТП - тормозные проценты;ТС - тормозная система;ТЦ - тормозной цилиндр;

ТЦР - тормозной цилиндр со встроенным регулятором хода поршня;

УТП - ускоритель тормозных процессов;

RIC(RIV) - международные предписания для пассажирских (грузовых) вагонов;

МСЖД - Международный союз железных дорог.

ПЕРЕЧЕНЬ, ПРИНЯТЫХ ОБОЗНАЧЕНИЙ ПАРАМЕТРОВ ТОРМОЗНЫХ СИСТЕМ

	ПАРАМЕТР		
№	Наименование	Обозначение	Размерность
1	2	3	4
1.	Тормозная масса	В	t
	- для вагона РВ "Р", порожнего и	1.0	
	груженого вагона;	$B_p^{1.2.}$	
	- для PB "G", порожнего и груженого	D 12	
	вагона;	$B_c^{1.2.}$	
	- для В "Р" и "R" при работающих	$\mathrm{B}_{\mathrm{P,R}}$	
	ускорителях тормозного процесса - без участия УТП	$egin{array}{c} \mathbf{B}_{P,R}^{\ *} \end{array}$	
2	•		NI/IzNI
2. 3.	Удельная тормозная сила при р _с ^{max}	b_c	N/kN
3.	"С" коэффициент – измеритель эффективности тормозной системы		
	- для PB "G", "Р", "R"	$C_{G,P,R}$	
	- для ДТС (геометрический)	$C_{\rm S}$	
	- для ДТС	$C_{\rm D}$	
4.	Коэффициент жесткости пружины ТЦ	C	kN/m
5.	Диаметр круга катания колес:	D_k	m
	- новых колес;	$\mathbf{D_k}^{max}$	
	- минимальный граничный;	$\mathbf{D_k^{min}}$	
	- средний.	$\mathbf{D_k}^{\mathrm{m}}$	
6.	Диаметр диска ДТС	D_{s}	m
7.	Геометричная площадь накладки ДТС	F _H	m^2
8.	Площадь поршня ТЦ	$F_{\rm C}$	
9.	Ускорение силы тяжести	g	m/s ²
10.	Износ колодок	∆ hk	m
11.	Суммарный износ шарниров РТС	Δ ha	m/ триангель
	отнесенный к триангелю		
12.	Сила тяжести (статическая)	G	kN
	- вагона;	$G_{ m w}$	
1.0	- колесной пары.	G_d	
13.	Предварительная длина (p _c =0) пружины	11	
14.	ТЦ	H _o	m
-	Ход поршня ТЦ	H _c	m
15.	Передаточное число рычажной ТС:	\dot{i}_{t}	-
	- порожнего и груженого вагона;	$1_{t1.2.}$	
	- РФ "Р" и "R"	$i_{tP,R}$	
16.	Коэффициент пропорциональности между	,	
	тормозной массой Вр и нормальной силой	k	
	нажатия:		
	- для едносекционных колодок Р10-320	k	
	- для двухсекционных колодок P10-2 x 250;	\mathbf{k}_2	
	- для ДТС;	k_{D}	

1	2	3	4
	- для PB "R" при работающих и		
	неработающих УТП;	k_R	
	- коэффициент ухудшения КПУ рычажной		
	передачи в эксплуатации.	k _n	
17.	Macca:	m	t
	- вагона в порожнем и загруженном		
	состоянии;	$m_{W1.2.}$	
	- на ось в порожнем и загруженном	m	
	состоянии;	$m_{a1.2.}$	
	 перекидывания порожнего-средний (груженный) режим; 	mo	
	- вагонного состава;	$m_{ m O} \ m_{ m T}$	
	- поезда.	m_1	
18.	Количество фрикционных узлов:	1112	
10.	- на вагоне;	n	
	- на колесной паре.	n_a	
19.	Давление в ТЦ:	p_{c}	Mpa
15.	- порожний и груженый вагон;	p _{c1.2.}	Tipu
	- РФ РВ "P/R".	$p_{cP,R}$	
20.	Сила:	P	kN
	- действующая на поршень ТЦ;	P_{c}	 ·
	- сила пружины ТЦ;	P_{CF}	
	- сопротивительная сила РТС, отнесенная		
	к триангелю;	P_R	
	- нормальная сила нажатия в фрикционной		
	паре;	P	
	- сила P _k для порожнего и загруженного	_	
	вагона;	$P_{1.2.}$	
	- сила P _k для PB "P" и "R";	$P^{P,R}$	
	- сила нажатия в фрикционной паре при		
	действии ручного тормоза.	P_{H}	
21.	Радиус колеса по кругу катания	R_k	m
22.	Радиус действия (геометрическое место	m	
	действия) силы P _s при ДТС	r ^m	m
23.	Тормозной путь	S	m
24.	Времена газодинамических тормозных	,	
	процессов:	t	S
	- наполнение ТЦ вагона до 0,95 p _c	$t_{\rm c}$	
	- наполнение ТЦ вагона до 0,95 р _с в		
	зависимости от длины поезда при PB "P/R";	t_c^{-1}	
	- отпуска ТЦ от р _с до 0,4 MPa.		
25.	Время нахождения вагона в эксплуатации	t _o	
25.	после ремонта.	T_{e}	мес.
26.	Скорость:	V_0	km/h,m/s,V
20.	- начала тормозного процесса;	• 0	K111/ 11,111/ 5, V
	- базовая, для определения измерителей		
	эффективности ТС;	$V_o{}^B$	
	- переключения РВ "R/Р"	V_R	
,	neperano remai i D 101	▼ K	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N
27. Удельное сопротивление. w N/k 28. Процент ускоренного повышение давления в ТЦ α % 29. Коэффициенты пропорциональности силовой функции коэффициента μ_a $\alpha_1 + \alpha_4$ - 30. Коэффициенты пропорциональности скоростной функции коэффициента μ_a $\beta_1 + \beta_4$ - 31. Коэффициенты пропорциональности между тормозной массы B_C и силы P_s $\Upsilon_{P,R}$ - 32. Расчетный зазор между колодкой и поверхностью катания колеса. Δ k m 33. Расчетная суммарная эластическая деформация элементов РТС, отнесенная к триангелям Δ e m 34. Коэффициент, потери усилия в АРТС η_t - η_t - - тригонометрический коэффициент; η_t η_t - - - триболический компонент; η_t - -	N
28. Процент ускоренного повышение давления в ТЦ	N
в ТЦ α % 29. Коэффициенты пропорциональности силовой функции коэффициента μ_a $\alpha_1 + \alpha_4$ - 30. Коэффициенты пропорциональности скоростной функции коэффициента μ_a $\beta_1 + \beta_4$ - 31. Коэффициенты пропорциональности между тормозной массы B_C и силы P_s $\Upsilon_{P,R}$ - 32. Расчетный зазор между колодкой и поверхностью катания колеса. Δ k m 33. Расчетная суммарная эластическая деформация элементов РТС, отнесенная к триангелям Δ e m 34. Коэффициент, потери усилия в АРТС тригонометрический коэффициент; η_t триболический компонент; η_t η_t -	
в ТЦ α % 29. Коэффициенты пропорциональности силовой функции коэффициента μ_a $\alpha_1 + \alpha_4$ - 30. Коэффициенты пропорциональности скоростной функции коэффициента μ_a $\beta_1 + \beta_4$ - 31. Коэффициенты пропорциональности между тормозной массы B_C и силы P_s $\Upsilon_{P,R}$ - 32. Расчетный зазор между колодкой и поверхностью катания колеса. Δ k m 33. Расчетная суммарная эластическая деформация элементов РТС, отнесенная к триангелям Δ e m 34. Коэффициент, потери усилия в АРТС тригонометрический коэффициент; η_t триболический компонент; η_t η_t -	
силовой функции коэффициента μ_a $\alpha_1 + \alpha_4$ - 30. Коэффициенты пропорциональности скоростной функции коэффициента μ_a $\beta_1 + \beta_4$ - 31. Коэффициенты пропорциональности между тормозной массы B_C и силы P_s $\Upsilon_{P,R}$ - 32. Расчетный зазор между колодкой и поверхностью катания колеса. Δ k m 33. Расчетная суммарная эластическая деформация элементов РТС, отнесенная к триангелям Δ e m 34. Коэффициент, потери усилия в АРТС η_t - тригонометрический коэффициент; η_t - триболический компонент; η_t η_t η_t η_t η_t	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
31. Коэффициенты пропорциональности между тормозной массы B_C и силы P_s $\Upsilon_{P,R}$ - 32. Расчетный зазор между колодкой и поверхностью катания колеса. Δ k m 33. Расчетная суммарная эластическая деформация элементов РТС, отнесенная к триангелям Δ e m 34. Коэффициент, потери усилия в АРТС тригонометрический коэффициент; η_t η_t - - триболический компонент; η_t -	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
32. Расчетный зазор между колодкой и поверхностью катания колеса. Δ k m 33. Расчетная суммарная эластическая деформация элементов РТС, отнесенная к триангелям Δ e m 34. Коэффициент, потери усилия в АРТС	
поверхностью катания колеса. Δ k m 33. Расчетная суммарная эластическая деформация элементов РТС, отнесенная к триангелям Δ e m 34. Коэффициент, потери усилия в АРТС η_t - тригонометрический коэффициент; η_t - триболический компонент; η_t	
33. Расчетная суммарная эластическая деформация элементов РТС, отнесенная к триангелям Δ e m 34. Коэффициент, потери усилия в АРТС - тригонометрический коэффициент; - триболический компонент; η _t -	
деформация элементов РТС, отнесенная к Δ е m 34. Коэффициент, потери усилия в АРТС ηt - - тригонометрический коэффициент; ηt - - триболический компонент; ηt ir -	
триангелям Δ е m 34. Коэффициент, потери усилия в АРТС η_t - - тригонометрический коэффициент; η_t - - триболический компонент; η_t^{ir}	
34. Коэффициент, потери усилия в АРТС η _t - тригонометрический коэффициент; η _t η _t '- триболический компонент; η _t ir	
- тригонометрический коэффициент; η_t - триболический компонент; η_t^{ir}	
- триболический компонент; η_t^{ir}	
35. Коэффициент потери усилия в ТЦ	
36. Коэффициент нажатия во фрикционном	
узле	
37. Коэффициенты эквивалентности: χ -	
- между РВ "Р" и "G";	
- между В и К _р λ и 9 _р для чугунных	
колодок. χ_a	
38. Тормозные проценты: λ	
- PB "G", "P", "R";	
- для масс вагона $m_{w1}, m_o, m_{w2};$ $\lambda_1 \div \lambda_4$	
- соответствующих массы достижения p _o	
при вагонах с бесступенчатым изменением	
p_o в зависимости от загрузки; λ_o	
- PB "P", "R" при отсутствии ускорителей	
тормозного процесса; λ_{PR}^{x}	
- PB "P", "R" откорректирован в	
зависимости от длины поезда; λ_{PR}^{-1}	
- PB "P", "R" 3a V _o λ _o	
39. Изменение λ за РВ "Р" и "R" в зависимости	_
от V_{o} при ДСС и КК $\Delta\lambda$ %	
40. Мгновенный коэффициент трения во	
фрикционном узле – дополнительные	
индексы – P10-320, P10-2x250, КК, -	
D (ДТС) μ _a	
41. Коэффициент, учитывающий влияние р на	
ускорение	

1	2	3	4
42.	Коэффициент ротирующих масс	ρ	1
43.	Средне-эксплуатационный, расчетный		
	коэффициент сцепления в контакте		
	колесо-рельс.	ψ_k	-

ВВЕДЕНИЕ

- 1. В настоящей памятке включены аналитические методы для определения основных параметров тормозных систем пассажирских (колодочных до 160 km/h, дисковых до 200 km/h) и грузовых (до 120 km/h) вагонов колеи 1435 мм.
 - 2. Как "основные" здесь обозначены следующие параметры:
- эффективная сила, действующая на штоке тормозного цилиндра;
- нормальная сила нажатия в фрикционных парах;
- передаточное число рычажных тормозных систем;
- измерители эффективности тормозных систем тормозные массы, тормозные проценты, расчетные силы нажатия, расчетные коэффициенты нажатия;
- расчетные коэффициенты сцепления, соответствующие полученным силам и моментам трения в фрикционных парах.
- 3. В памятке рассматриваются расчеты соответствующих режимов воздухораспределителей "G", "P" и "R" в том числе при наличии фрикционных пар с чугунными (едносекционные и двухсекционные) колодками и дисковыми фрикционными парами.
- 4. В памятке не рассматриваются методы определения нормальной силы нажатия как результатного вектора действующих в фрикционных узлах силы в направлении триангелях, рычагов, подвесок и т.д. В случаях, когда принимают, что директриса силы нажатия совпадает с радиусом колеса значения параметров надо рассматривать как "первое приближение".
- 5. Расчеты высокомощных тормозных систем типа "R" рекомендуется проводить на основе измерителя "С коэффициент".

1. ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ПАРАМЕТРОВ ТОРМОЗНЫХ СИСТЕМ ГРУЗОВЫХ ВАГОНОВ

1.1. Общие определения:

- а) тормозные системы вагонов колеи 1435 мм отвечают требованиям RIV и памяток МСЖД OR 540÷547 и характеризуются следующим:
- максимальное расчетное давление в ТЦ р_с=0,38 Мра;
- время наполнения ТЦ до 95% от максимального давления для PВ "Р" и "G" соответственно t=3,5 и t_c=24s;
- изменение силы нажатия P путем двухступенчатого (механического или пневматического) грузоперекидывателя, допустимая скорость 100 km/h, вагоны класса "S";
- бесступенчатое изменение силы P до осевой массы m_a = 14,5t (допустимая скорость 120 km/h) для m_a >14,5t V_L =100 km/h вагоны класса "S";
- бесступенчатое изменение силы P_{κ} до осевой массы, 18 t и скорость V_L =120 km/h вагоны класса "SS";
- б) граничные тормозные проценты, которые должны быть обеспечены расчетами, приведены в табл. 1:

Класс вагона	Вид переключения	Масса вагона, t			
		\mathbf{m}_{w1}	r	$\mathbf{n_o}$	$\mathbf{m}_{\mathbf{w}2}$
		Тормозные проценты λ, ТП			
		λ_1	λ_2	λ_3	λ_4
S	двухступен-чатое	100-125	55	105-	65
				125	
S	бесступенчатое	100-125	-	-	65(100*)
SS	бесступенчатое	min100-5			

^{*}для m_{a2}= 18

Значения параметра λ_4 относятся к m_{a2} =20t и 22,5t и для m_{a2} =22,5 t Значение λ_4 =60.

1.2. Методы и программа расчетов тормозных систем с пневматическим измерением силы нажатия.

Расчеты проводятся по представленной принципиальной блок-схеме. Приложение 1.

1.2.1. Вводные параметры:

- а) данные об осевых массах вагонов в порожнем, загруженном и среднем состоянии (если известна, масса при которой давление в ТЦ достигает свое максимальное значение);
 - б) тормозные проценты вводятся на основе табл. 1;
- в) расчетный коэффициент сцепления для основных серий вагонов можно принимать ψ_{κ} =0,2 при допустимой скорости юза V_B =10 rv/h;
 - г) коэффициент трения во фрикционных узлах:
 - для фрикционных узлов с колодками типа P10-320 µ_a определяется формулами:
- для фрикционных узлов с колодками P10-2x280, независимо от скорости, μ_a дается формулой:
- д) коэффициент пропорциональности "к" (режим "Р") для колодок типа P10-320 и P10-2x250 определяется в зависимости (зависимости действительны до вступления в силу новой редакции памятки МСЖД 544-1.

Значения коэффициентов "к" для колодок типа Р6 можно принимать из приложения памятки 544-1 МСЖД.

- е) коэффициент пропорциональности МЖС γ (режим "G") определяется для современных воздухораспределителей (t_c =24s, α =10%) из графиков, приведенных в Приложении 2 (здесь значения γ $_{p10-320}$ и γ $_{p6-400}$ принимаются одинаковыми;
- ж) параметры ТЦ- F_o , H_o и P_c^e определяются для конкретных конструкций. В приложении 3 приведены графики P_c = $f(p_c,H_o)$. Имеющие универсальное применение. Силы P_c и P_o^c в Приложении отвечают только конкретной конструкции ТЦ, применяемой на БДЖ;
- з) коэффициент потери усилия в рычажной ТС принимаются η_1 =0,92 для четырехосных вагонов и η_1 =0,94 для двухосных;
- к) значения хода поршня ТЦ применяются H_{c1} =75 mm и H_{C2} =135mm. Можно пользоваться в среднем H=120 mm;
 - л) сила пружины APTC P_R=2kN/триангель, для APTC типа DRV.;

1.2.2. Расчеты по БЛОКУ І

- а) сила Р₂ определяется зависимостями:
- для фрикционных узлов с колодками типа Р10-320:
- для фрикционных узлов с колодками типа P10-2x250:

Сила нажатия на колодку P, при заданных значениях λ_p , m и n может быть определена и из номограмм – Приложение 4 и Приложение 5.

- б) проверка отсутствия юза выполняется соблюдением неравенства: Если неравенство (8) не соблюдается, то можно ввести новые значения $\lambda_p \pm \Delta \lambda_1$ в рамках предусмотренных в табл. 1.
- в) передаточное число, соответствующее силе P_2 и p=0,38 Mpa определяется формулой:

Выражение в скобках знаменателя определяет P_0^c (приложение 3).

1.2.3. Расчеты по БЛОКУ II:

- а) сила нажатия P_1 , определяется равенствами (6) или (7) подставляя соответствующие значения параметров m_{a1} и λ_p^{-1} , а также из номограмм. Приложение 4 и Приложение 5;
- б) проверка отсутствия юза выполняется по неравенству (8), подставляя значения $P_{\kappa 1}$ и m_{a1} . При невыполнении неравенства корректируются λ_1 в пределах предусмотренных в табл. 1;
- в) давление в тормозном цилиндре p_{c1} соответствующие i_1 которое было определено для m_{a2} массы m и силы P_1 определяется по формуле:

1.2.4. Расчеты по БЛОКУ III и IV:

а) тормозные массы, $\mathbf{B_p}^{1.2.}$ и $\mathbf{B}^{1.2.}$ определяются формулами памятки МСЖД

G

544-1:

Для современных воздухораспределителей, соответствующих памятке МСЖД

- 540 (t_0 =20÷28s, α =10÷12%), если $B_p \leq B_G$, принимается $B_G = B_p$.
- б) учет ухудшения КПУ во время эксплуатации вагонов учитывается коэффициентом k_p , как множителем тормозных масс, определенных по зависимостям (11) и (12) т.е. $B_p = B_p k_n$ (в блок-схеме шаг не показан).
 - 1.2.5. Расчет основных геометрических параметров ТС.

Основные геометрические параметры TC являются размерами "A", "X", "Y", "y", "Z" (при стандартной схеме рычажной TC) – см. схему к Приложению 6:

- а) размер "А" (регулировочный размер АРТС)
- б) размер "Х":
- в) размер "у" (длина винта АРТС):

$$y=2(\Delta hk+g_R+\Delta hai_D+20$$
 (15) n_g Г) размер "Y"

д) размер "Z" определяется в зависимости от конструкции рычажной ТС тележки или колесной пары (приложение 6).

При расчетах по зависимостям (13) \div (16) параметрам придаются следующие осредненные значения: $\Delta_k=5\div 6$ mm, $\Delta_e=6$ mm/триангель (для сила нажатия 32 kN и рычажная система, отвечающая классу вагона "S", для вагонов с осевой массой 22,5 t с упрочненной РТС – как и для вагонов класса "SS").

1.2.6. Оформление результатов расчетов.

Результаты расчетов тормозной системы грузового вагона представляется в унифицированной таблице — Приложение 6.

1.3. Метод и программа расчетов тормозных систем с механическим двухступенчатым изменением силы нажатия в зависимости от массы вагона.

Последовательность расчетов отличается от рассмотренной в п. 1.3. следующем:

- в блоке II_{pol} не определяется. В зависимость (9), замещая вместо nP_2 , nP_1 и вместо $H_{o2}-H_{o1}$ за p_o =0,38 MPa получается і. Рассчитанное в блоке i_1 обозначается как i_{12i} ;
- в конце блока IV запись В^{тах}=то отпадает;
- в блоке IV, после расчета B_{p2} включается шаг программы по определению m_o :

Масса m_o в окончательном виде получается в результате компромисса между m_o и m_o , учитывая данные из табл. 1.

2. ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ПАРАМЕТРОВ ВЫСОКОМОЩНЫХТОРМОЗНЫХ СИСТЕМ ВАГОНОВ С ЧУГУННЫМИ КОЛОДКАМИ

2.1. Общие определения

- 2.1.1. Высокомощные тормозные системы характеризуются следующим:
- имеют режим воздухораспределителей G.P.R (или только P.R):
- в конструктивном отношении характеризуются наличием скоростных и антиблокирующих регуляторов ТЦ 14" или 16";
- измерители эффективности тормозной системы λ находятся в границах:
- 105≤ λ_p 125 $T\Pi$, 150 ≤ λ_R ≤170 $T\Pi$ (для ненаселенного вагона) или 135 ≤ λ_R для вагонов стандартной населенности (масса на пассажирском месте 80 kg)
- фрикционные пары включают колодки типа P10-2x250.

2.1.2. Определение тормозных масс для PB "R" производится только экспериментами с 60-осном вагонным составом (согласно кодексу МСЖД).

Ведение нового измерителя тормозной эффективности – "C" – параметр", B_R можно получить аналитическими расчетами.

- 2.2. Аналитическое определение основных параметров TC режим воздухораспределителей "P/R"
 - 2.2.1. Определение параметров C_p и C_R . В общем виде "С" измеритель определяется формулой

- 2.2.2. Определение сил, нажатия во фрикционных парах:
- а) для РВ "Р"
- б) для РВ "R":
- 2.2.3. Определение передаточного числа ТС.

По зависимости (9) определяются передаточное число i_{1P} и i_{1K} .

Учитывая границы изменения λ_p и λ_R , i_1 выбирается компромиссом между i_{1p} и i_{1R} .

- 2.2.4. Определение тормозных процентов вагонов:
- а) для РВ "Р" расчетные значения C_p и P_p определяют $\lambda_p \approx 105~\text{TH}$;
- б) для PB "R" λ_R можно определить аналитическим двумя экспериментальными метолами:
- на основе существующего метода МСЖД (изысканием точки пересечения в номограмме МСЖД $S=f(V_o,\lambda,i_c=0\%0)$ функции $S=f(v_o)$ с ординатой $S_o=1000$ m):

$$\lambda_{R} = 17 + 365 C_{R} \approx 166 \text{ T}\Pi$$
 (22)

- на основе симулированием экспериментов торможения 60-осного вагонного состава с базовой скоростью V_o =120 km/h (метод, использованный в практике для конвенциальных пассажирских вагонов):

$$\lambda_{R} = 42 + 281 \text{ C}_{R} \approx 157 \text{ T}\Pi$$
 (23)

Конкретные тормозные проценты для РВ "Р" и "R" (формулы (22) и (23) обеспечиваются соответствующими значениями $C_{R,P}$ и силы $P_{R,P}$.

2.3. Номографическое определение основных параметров

Номограммы для определения основных параметров TC типа PR (методом можно пользоваться и для TC типа GPR-A) приведены в Приложении 7.

Алгоритм применения метода следующий:

- по номограмме "А" для выбранных значений V_P , V_R и соответствующие ψ_κ , определяются по ординате C_P и C_R ;
- по номограмме "В" для собственной массы вагона m_w определяются значения P_P и P_R :
- по номограмме "М" для определенных значений C_p и C_R определяются λ_p и λ_R (или λ_R^{1000}):
- по номограмме "L" с учетом диаметра ТЦ определяются i_{1p} и i_{1k} и принимается i_1 ;
- для выбранного значения i_1 по номограмме "L" учитываются P_P и P_R на основе которых по номограмме "В" определяются параметры C_P и C_R . По номограмме "А" контролируются значения ψ_{κ} с учетом функциональной эффективности АБС.

2.4. Определение тормозных масс $B_{P,R}$ при отсутствии ускорителей тормозных процессов

Тормозные массы вагонов, отражающие эффективность TC при отсутствии УТП (здесь принято обозначение B_1^*) определяются равенством:

$$B_R^* \approx 0.93 B_R \tag{24}$$

 B_R соответствуют λ_R рассчитанное по формулам (22) и (23).

3. ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ПАРАМЕТРОВ ДИСКОВЫХ ТОРМОЗНЫХ СИСТЕМ ВАГОНОВ RIC

3.1. Общие определения

- 3.1.1. Дисковые TC пассажирских вагонов в принципе высокомощные, т.е. имеющие режимы "G-P-R" или "P-R".
- 3.1.2. Границы изменения тормозных процентов для PB "P" и "R" соответствуют данным в п. 2.1.
- 3.1.3. Давление в ТЦ стандартизировано для РВ "Р" и "R" соответственно p_c =0,3 Мра и p_c =0,38 МРа.
- 3.1.4. Определение основных параметров базируется на бездименсионных C_s и C_D измерителями или на k_D коэффициентом.
- 3.1.5. При типовых расчетах рекомендуется выбирать базовую скорость V_o^B =120 km/p для PB "R" и 100 km/h для PB "Р".

3.2. Аналитические расчеты ДТС через С-параметр.

- 3.2.1. Метод и программа исчисления параметров ДТС синтезированы в блок схеме Приложение 8:
 - 3.2.2. Расчеты по БЛОКУ ІІ:
 - а) определение С-коэффициента для ДТС:
 - геометрический коэффициент C_s (для среднего диаметра круга катания колес $D_k^{\ m}$):
 - коэффициент C_D:

 $C_D = C_S \psi_k$ (28)

- б) определение силы нажатия в фрикционной паре:
- в) определение тормозных процентов λ_{PR} в функции базовой скорости и принятого коэффициента сцепления производителя по формулам (табл.2).

_

^{*}Подлежит уточнению

ψ_k	Зависимость $\lambda = (V_o \psi_k = const)$
0,11	$\lambda_1 = 85,42+0,41$ $V_0 + 0,0024 V_0^2 - 0,000012 V_0^3$
0,12	$\lambda_1 = 102,04 + 0,316 \text{ V}_0 + 0,00297 \text{ V}_0^2 - 0,000012 \text{ V}_0^3$
0,125	$\lambda_1 = 101,29 + 0,4797 V_o + 0,00172 V_o^2 - 0,00000876 V_o^3$
0,13	$\lambda_1 = 100,45 + 0,0357 \text{ V}_0 + 0,000587 \text{ V}_0^2 - 0,00000589 \text{ V}_0^3$
0,135	$\lambda_1 = 89,98 + 1,04$ $V_0 + 0,00267 V_0^2 - 0,00000278 V_0^3$

- 3.2.3. Расчеты по <u>БЛОКУ III</u> (проверка минимальных тормозных процентов). Расчеты повторяются как по блоку I для C, определенным для D_k^{max} и значения силы P полученными в блоке I.
 - 3.2.4. Расчеты по <u>БЛОКУ IV</u> (проверка юза). Расчеты повторяются как по блоку II для C_s = $f(D_k^{\ min})$.

3.2.5. Расчеты по определению P, ϑ и B_R (БЛОКУ V).

Для откорректированных значений $\lambda_R \psi_k$ получается окончательные значения k_R , θ_R и B_R . Передаточное число i_1 ДТС определяется формулой:

где P_c^c можно определить из номограмм Приложения 10. КПУ рычажной передачи для типовых ДТС принимается η =0,95.

3.2.6. Расчеты по БЛОКУ VI

Определяются основные параметры ДТС для PВ "Р" на основании передаточного числа i_1 из блока V.

При расчетах по определению λ_R^{1000} , надо пользоваться и блоками II-а, III-а, IV-а и V-а.

3.3. Номографическое определение параметров ДТС.

Номографическое определение параметров ДТС производится по номограммам (Приложения 9.1. и 9.2.) следуя алгоритма по блок-схеме (Приложение 8), где указаны и соответствующие номера номограмм (A-D).

3.4. Определение тормозных масс ДТС "kp" коэффициентом

3.4.1. Определение k_D -коэффициента производится по эмпирической формуле (μ_a =0,35; ψ_k оказывает пренебрежимое влияние): k_D =2,4+0,0172 $V_o^{\ B}$ (30)

3.4.2. Тормозная масса определяется равенством:

3.5. Определение тормозных масс вагонов при отсутствии ускорителей тормозных процессов

Тормозные массы B_R^x и B_p^x вагонов с ДТС определяются равенством (24)