ОРГАНИЗАЦИЯ СОТРУДНИЧЕСТВА ЖЕЛЕЗНЫХ ДОРОГ (ОСЖД)

I издание

Разработано экспертами Комиссии ОСЖД по инфраструктуре и подвижному составу 18-20 июня 2019 г., Словацкая Республика, г. Братислава

P 751

Утверждено совещанием Комиссии ОСЖД по инфраструктуре и подвижному составу 5-7 ноября 2019 г., Комитет ОСЖД, г. Варшава

Дата вступления в силу: 7 ноября 2019 г.

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ ДЛЯ ПРОЕКТИРОВАНИЯ СТРЕЛОЧНЫХ ПЕРЕВОДОВ ВЫСОКОСКОРОСТНЫХ МАГИСТРАЛЕЙ

1. Назначение и область применения

- 1.1. Настоящие технические требования разработаны для проектирования стрелочных переводов и съездов типа P65 для путей высокоскоростных железнодорожных линий (магистралей) колеи 1520 мм.
- 1.2. Стрелочные переводы и съезды должны быть разработаны для эксплуатации на путях, по которым планируется к обращению подвижной состав с наибольшими статическими осевыми нагрузками и скоростями движения, приведенными в таблице 1.

Таблица 1. Линейка проектируемых стрелочных переводов и съездов

Марка	Скорость по	Максимальные статические осевые		Конструкция
стрелочного	прямому/	нагрузки, кН		подрельсового
перевода	боковому			основания
(съезда)*	направлению,	Моторвагон-	локомотив/	
	км/ч	ный	пассажирский или	
		подвижной	грузовой вагон со	
		состав со	скоростью	
		скоростью	движения до	
		движения до	250 км/ч	
		400 км/ч		
1/36	400/200	170	226/210	
				Безбалластная
				резоалластная
1/25	400/120	170	226/210	
1/25	400/120	170	226/210	Железобетонные
1/22	250/120	-	226/210	брусья на
1/18	250/80	-	226/210	балласте
1/11	250/50		226/210	

^{*) –} в процессе проектирования марка стрелочного перевода и съезда может быть уточнена.

2. Основные требования к продукции

- 2.1. Расчетное непогашенное ускорение при движении на боковое направление для стрелочных переводов и съездов со скоростями движения по прямому направлению, допускается:
 - до 250 км/ ч не более 0.7 м/c^2 ;
 - свыше 250 км/ч не более 0.5 м/c^2 .
- 2.2. Минимальная ширина междупутья на стрелочных съездах определяется проектной документацией на высокоскоростную железнодорожную линию (магистраль) и конструкторской документацией.

- 2.3. Стрелочные переводы и съезды должны быть разработаны комплексно. Комплект конструкторской документации должен включать в себя:
- конструкторскую документацию на стрелочный перевод (съезд) с чертежами узлов и деталей;
 - конструкторскую документацию на комплект железобетонного основания;
- конструкторскую документацию на электроприводы, устройства дополнительного контроля положения остряков и комплекс переводных и замыкающих устройств;
- конструкторскую документацию на систему автоматизированной очистки переводных устройств от снега и льда в зимних условиях.
- 2.4. Стрелочные переводы (съезды) должны иметь непрерывную поверхность катания (далее НПК).
- 2.5. Переводные устройства стрелок и крестовин с НПК стрелочных переводов и съездов должны быть оборудованы внешними замыкателями и устройствами контроля прижатия (УК) остряков и сердечников крестовин к рамным рельсам и усовикам соответственно. Во всех сечениях контроля прижатия остряков к рамным рельсам должны быть установлены межостряковые тяги, обеспечивающие двухконтурное замыкание остряков.
- 2.6. Стрелочные переводы и съезды должны быть оборудованы системой автоматизированной очистки, в том числе элементов электроприводов и внешних замыкателей. Система автоматизированной очистки должна обеспечивать работу комплекса стрелочного перевода (съезда) во всем диапазоне фактических температур. При использовании электропривода в шпальном исполнениидолжен быть предусмотрен обогрев внутренней части полого металлического бруса.
- 2.7. Стрелочные переводы и съезды должны изготавливаться из рельсов, предназначенных для высокоскоростного движения, остряковых рельсов специального назначения.
- 2.8. Конструкция основания стрелочного перевода и съезда должна обеспечивать отвод поверхностных вод в зоне переводных механизмов.
- 2.9. Конструкция переводных механизмов должна обеспечивать фиксацию и надежное удержание в крайних прижатых положениях (рабочих положениях) подвижных элементов (остряк, сердечник) стрелочного перевода.
- 2.10. Наклон поверхностей катания головок рельсовых элементов стрелочного перевода и съезда должен соответствовать наклону поверхностей катания рельсов (подуклонке) примыкающих путей.
- 2.11. Крепление металлических элементов к бетонному основанию не должно требовать периодического обслуживания. Крепления должны предусматривать возможность регулировки ширины колеи ± 10 мм, и положения головки рельсовых элементов по высоте ± 18 ; -4 мм.

- 2.12. Стрелочные электроприводы, переводные механизмы должны обеспечивать переводные усилия, необходимые для надежного перевода остряков и подвижных сердечников крестовин. Количество электроприводов стрелочных и внешних механических замыкателей определяется проектом и должно обеспечивать безопасность движения при заданной скорости.
- 2.13. Конструкция стрелочных переводов и съездов должна обеспечивать изоляцию металлических частей для надежной работы электрических рельсовых цепей, целостность рельсовой линии при прохождении подвижного состава, канализацию обратного тягового тока, возможность запирания остряков и подвижных сердечников крестовин в рабочем положении на навесные замки.
- 2.14. Конструкцией электроприводов стрелочных должен быть предусмотрен ручной перевод стрелки и крестовины с механическим запиранием, блокировкой электрического управления и сохранением электрического контроля.

3. Условия эксплуатации

- 3.1. Стрелочные переводы и съезды, а также переводные и замыкающие устройства должны соответствовать диапазону температур от минус 60° С до плюс 60° С.
- 3.2. Рекомендуемый ресурс металлических частей стрелочного перевода и съезда должен составлять не менее 500 млн. т брутто, а рекомендуемый срок службы не менее 15 лет.
- 3.3. Рекомендуемый срок службы электроприводов, переводных и замыкающих устройств должен быть не менее 25 лет.

4. Дополнительные требования

- 4.1. Конструкции переводных механизмов и устройств, обеспечивающих работу стрелочного перевода и съезда на железобетонных брусьях (на балласте), а также устройств, контролирующих условия безопасности движения поездов по стрелочному переводу, должны обеспечивать возможность проведения выправочноподбивочно-рихтовочных работ на стрелочном переводе машинизированным способом.
- 4.2. Конструкция стрелочного перерода должна обеспечивать защиту от угона рельсовых элементов стрелочных переводов (съездов) вследствие возникновения температурных напряжений, а также вертикальных и горизонтальных сил от подвижного состава.
- 4.3. Все рельсовые стыки стрелочного перевода, кроме изолирующих, должны позволять их сварку в пути.

- 4.4. Конструкция стрелочных переводов и съездов должна предусматривать возможность транспортировки элементов стрелочных переводов или блоков. Собранные блоки стрелочного перевода должны выдерживать без остаточных деформаций нагрузки, возникающие при его погрузке, транспортировке и укладке. Конструкция подрельсового основания (как железобетонных брусьев, так и безбалластного железобетонного основания) должна обеспечивать возможность размещения и крепления электрокабелей, заземления опор контактной сети, путевых перемычек, межпутных соединителей. В конструкции безбалластного основания предусмотреть во всех сечениях установки электроприводов и УК кабельные каналы для прокладки кабелей СЦБ и электрообогрева стрелочных переводов.
- 4.5. Конструкция стрелочных переводов (съездов) должна быть ремонтопригодна.
- 4.6. В составе рабочей проектной документации должны быть разработаны схемотехнические решения по управлению электроприводами в увязке с системами ЭЦ с обеспечением контроля положения и синхронизации, при переводе подвижных элементов (остряк, сердечник) одиночного стрелочного перевода и двух переводов в составе съезда.
- 4.7. Рабочие и контрольные тяги должны иметь узел регулировки длины и изолирующие вставки.
- 4.8. Электропривод должен иметь контакт безопасности для исключения перевода с поста электрической централизации при сохранении контроля положения остряков и сердечников, а также обеспечивать лево право стороннюю установку.
- 4.9. Электроприводы стрелочные, переводные и замыкающие устройства должны иметь антивандальное исполнение.
- 4.10. Предусмотреть в составе стрелочного перевода устройства уменьшающие переводные усилия остряков стрелки и сердечника крестовин.
- 4.11. Изолирующие стыки должны обеспечить надежную работу рельсовых цепей.
- 4.12. Разработчик должен принимать участие в разработке технологии обслуживания оборудования стрелочного перевода и документа устанавливающего границы техобслуживания и ремонта.
- 4.13. Переводной механизм должен обеспечивать усилия перевода в сечениях, определенных проектом и контроль положения остряков стрелки и сердечника крестовины с выводом информации к ДСП на пульт управления ЭЦ станции.
- 4.14. В конструкции стрелочного перевода возможно применение электроприводов, как шпального исполнения, так и консольного крепления в зависимости от конструкции стрелочного перевода, его назначения и типа основания, с устройствами диагностики и мониторинга технического состояния узлов и механизмов.
- 4.15. Надежность работы стрелочного перевода в целом и его элементов должна подтверждаться результатами эксплуатационных испытаний.