ОРГАНИЗАЦИЯ СОТРУДНИЧЕСТВА ЖЕЛЕЗНЫХ ДОРОГ (ОСЖД) I издание Разработано совещанием экспертов V Комиссии P с 30 марта по 1 апреля 2004 г., в г. Кишиневе 745/6 Утверждена совещанием V Комиссии Дата вступления в силу: 5 ноября 2004 г. Примечание: БЕСПОДКЛАДОЧНОЕ СКРЕПЛЕНИЕ ДЛЯ КРИВЫХ МАЛОГО РАДИУСА

1. Основные положения

- 1.1 Внедрение железобетонных шпал (или железобетонных моноблочных элементов) в кривых малого радиуса потребовало применение упругих рельсовых скреплений. Тенденции развития на большинстве европейских железных дорог направлены на бесподкладочные типы скреплений, несложные, эффективные, их можно предварительно смонтировать на базе и являются малозатратными в содержании.
- 1.2 Конструкция упругого бесподкладочного скрепления должна вести не только к понижению износа рельсов, но также к понижению динамических воздействий на шпалы и на балласт. Все это одновременно продлевает срок службы верхнего строения пути.
- 1.3 Предлагаемая памятка содержит технические параметры и рекомендации по использованию упругого бесподкладочного скрепления в кривых с малыми радиусами в пути с железобетонными шпалами и балластом.
- 1.4 Настоящая памятка предназначена для проектирования и согласования отдельных рекомендуемых типов бесподкладочных скреплений.
- 1.5 Настоящая памятка действует для железнодорожных линий с кривыми радиусом от 150 м до 400 м и максимальной осевой нагрузкой 260 кН.
- 1.6 Упругое бесподкладочное скрепление характеризуется основным упругим элементом, которым является упругая зажимная планка или упругая соединительная муфта. Прижимное усилие обеспечивает постоянный упругий контакт упругого элемента с подошвой рельса.
- 1.7 В зависимости от конструкции рельса и передачи нагрузки от рельса через элементы скрепления железобетонную шпалу скрепления подразделяются на :
 - скрепление с упругой зажимной планкой, шпальным шурупом и пластмассовым дюбелем, забетонированным в шпале,
 - скрепление с упругой муфтой и элементом, забетонированным прямо в железобетонную шпалу во время ее производства (якорь).
- 1.8 Прижимное усилие зажимной планки является постоянным и зависит от упругой характеристики зажимной планки и необходимой величины момента затяжки, которым затягивается шуруп. Необходимый момент затяжки создается путевыми механизмами, которые позволяют регулировать его с соответствующей точностью.

Прижимное усилие соединительной муфты определяется упругой характеристикой и конструкцией якоря (элемента забетонированного в шпале). На упругую характеристику муфты оказывает влияние выбранный тип материала.

2. Технические требования к элементам бесподкладочного скрепления

- 2.1 Упругие зажимные планки, муфты
- 2.1.1 Технические требования к размерам, качеству материала и его химическому составу зависят от нормативных рекомендаций отдельных железнодорожных управлений.
- 2.1.2 Твердость материала упругих зажимных планок рекомендуется от 400 до 500 HV (по Виккерсу) при измерении на готовом изделии.
- 2.1.3 Прижимное усилие зажимных планок и муфт в эксплуатации должно быть не ниже 8 кН.

2.1.4 Защита изделия

Для транспорта упругие зажимные планки и муфты оснащены защитным покрытием. Для высококоррозионной среды указанные элементы выпускаются со специальным антикоррозионным покрытием.

2.2 Упругие прокладки под подошву рельса

Прокладки изготовляются из полимерных материалов и имеют толщину 6-10 мм. Их основной характеристикой является жесткость – определяемая как «секущая жесткость». Жесткость прокладки определяется упругими свойствами материала и формой прокладки (профилирование рабочей поверхности – дизайн).

Рекомендуемые пределы жесткости зависят от упругости остальных упругих элементов в скреплении и от требуемой упругости узла скрепления как одного целого. Максимальное значение предела жесткости не должно превышать 75 кН.мм⁻¹.

2.3 Элементы для регулирования ширины колеи

Регулирование ширины колеи в этих типах скреплений решается, как правило, заменой некоторых элементов, соответствующий размер которых непосредственно влияет на ширину колеи. Необходимо, чтобы конструкция скрепления позволяла плавное увеличение ширины колеи , мин. ± 4 мм.

3. Технические требования к свойствам скреплений

3.1 Сопротивление против продольного перемещения рельсов

В целях ограничения возможности угона рельса и превышения предельного размера стыкового зазора, в случае излома рельса в бесстыковом сварном пути определены в узле скрепления предельные значения сопротивления против продольного перемещения рельсов.

Значение сопротивления против продольного перемещения рельсов в бесподкладочных типах скреплений должно быть не менее 7,0 кН. Измерение осуществляется на узле скрепления, прикрепленном в соответствии с технологией.

3.2 Гашение ударной нагрузки

Измерение осуществляется на шпалах, для которых разработано скрепление.

На основании результатов измерения узел скрепления относит к следующим категориям гашения:

низкое гашение < 15 %

среднее гашение 15 - 30 %

высокое гашение > 30 %

Требуемую категорию гашения определяет уполномоченный орган потребителя с учетом назначения данного скрепления.

3.3 Электрическое сопротивление системы скрепления и шпалы

Электрическое сопротивление определяется в целях обеспечения функционирования устройств СЦБ.

В случае наличия электрической изоляции (по требованию потребителя) ее сопротивление не должно быть меньше, чем $5 \ \kappa\Omega$ между рельсом и шпалой. В специальных случаях можно требовать даже более высокие значения.

3.4 Воздействие агрессивной среды

В случае повреждения узла скрепления от воздействия агрессивной среды, он должен сохранять способность к демонтажу и повторному монтажу с помощью предназначенных для этого ручных инструментов.

3.5 Допуски на ширину колеи скрепления рельса

Конструкция скрепления на бетонных шпалах не должна допускать изменения ширины колеи больше чем ± 1 мм.

Поставщик предоставит расчеты, включая допуски всех составных частей, показывающие максимальные предельные значения положения точки на головке рельса, в которой измеряется ширина колеи и которая может появиться при использовании нормальных размеров профилей рельсов требуемых потребителем.

3.6 Составные части скрепления жестко прикрепленные к шпалам

В целях обеспечения прочного соединения составных частей скрепления с железобетонной шпалой, эти части прижимаются к поверхности бетона с определенной силой. После устранения прижима в бетоне прилегающем к прикрепленной части, не должно быть заметных трещин. Положение жестко прикрепленных составных частей скрепления также не должно изменяться. Допускается отделение части жидкого цементного раствора из под составной части скрепления.

3.7 Эксплуатационная проверка

Результаты лабораторных испытаний проектируемого скрепления являются основой для решения о проведении эксплуатационных испытаний. Испытательный участок с минимальной длиной 300 м должен быть создан на пути с максимальной грузонапряженностью. Испытательный участок контролируется не реже одного раза в год. На основании результатов оценки после использования в пути на протяжении одного года потребитель принимает решение о следующем: продолжение испытательной эксплуатации, демонтаж, принятие к текущей эксплуатации.

4. Другие технические требования

- 4.1 Все составные части скрепления не должны ухудшать показателей качества в широком температурном интервале, в котором эксплуатируется железнодорожный путь. Они должны быть стойкими к атмосферным воздействиям, к ультрафиолетовому излучению, к нефтепродуктам, к кислотам и основаниям.
- 4.2 Скрепление должно позволять автоматизированный и ручный монтаж и демонтаж.
- 4.3 Скрепление должно позволять простое изменение профиля линии.
- 4.4 Скрепление должно иметь большой срок службы (15 20 лет) и оно должно позволять ускоренную замену составных частей, их повторное использование.

5. Заключительные положения

- 5.1 Ход измерения отдельных значений технических параметров элементов или скреплений определен в нормах одобренных в отдельных странах-членах ОСЖД.
- 5.2 Возможность использования отдельных систем бесподкладочного скрепления в некоторых случаях ограничена пространственным расположением отдельных элементов, например, в клееных или сборных изолирующих стыках, в тяжело доступных местах, в специальных конструкциях пути и др.