ОРГАНИЗАЦИЯ СОТРУДНИЧЕСТВА ЖЕЛЕЗНЫХ ДОРОГ (ОСЖД)	
II издание	
Разработано экспертами Комиссии ОСЖД по инфраструктуре и подвижному составу 17-19 июня 2008 г., г. Свиноустье, Республика Польша	P 657/1
Утверждено совещанием Комиссии ОСЖД по инфраструктуре и подвижному составу 3-6 ноября 2008 г., Комитет ОСЖД, г. Варшава	
Дата вступления в силу: 6 ноября 2008 г.	
Примечание. Теряет силу I издание Памятки от 12.08.1975 г.	
ВРЕМЕННЫЕ ТЕХНИЧЕСКИЕ УКАЗАНИЯ ПО ПОДГОТОВКЕ ТЯГОВОГО ПОДВИЖНОГО СОСТАВА К МОНТАЖУ АВТОСЦЕПКИ	

СОДЕРЖАНИЕ

- 1. Область применения
- 2. Общие положения
- 3. Требования к прочности рам и свободным пространствам для размещения, монтажа и работы поглощающего аппарата и автосцепки
- 4. Условия сцепления в отношении сферы захвата с учетом расстояния между осями и шкворнями тележки и консоли
- 5. Требования к монтажу автосцепки и ее дополнительному оборудованию
- 6. Требования к размещению воздушных и электрических магистралей Приложение A

Статические усилия для испытания деталей держателя и приемки автосцепки

Приложение Б

Необходимое место для сочленения двух автосцепок в нормальном положении

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1 Настоящие Рекомендации по подготовке тягового подвижного состава (ТПС) к монтажу автосцепки (далее Рекомендации) содержат основные требования по подготовке существующего и вновь проектируемого подвижного состава к монтажу автосцепными устройствами на железных дорогах с шириной колеи 1520 мм и 1435 мм.
- 1.2 Рекомендации распространяются на ТПС, который должен быть оборудован автосцепными устройствами.
- 1.3 Рекомендации разработаны согласно конструкторской и технологической документации, правилам, инструкциям, инструктивным указаниям, действующим в системе Организации сотрудничества железных дорог (ОСЖД).

2 ОБЩИЕ ПОЛОЖЕНИЯ

Автосцепное устройство, предназначенное для установки на ТПС, должно отвечать следующим условиям:

- прочности рамы единицы ТПС;
- сцепления захвата с учетом расстояния между осями или шкворнями тележки и консоли;
 - монтажа автосцепки и всех дополнительных частей (деталей).

З ТРЕБОВАНИЯ К ПРОЧНОСТИ РАМ И СВОБОДНЫМ ПРОСТРАНСТВАМ ПРИ РАЗМЕЩЕНИИ, МОНТАЖЕ И РАБОТЕ ПОГЛОЩАЮЩЕГО АППАРАТА АВТОСЦЕПКИ

- 3.1 Требования к прочности рам тягового подвижного состава при статической нагрузке:
 - 3.1.1 Действующие усилия, которые должны выдерживать рамы ТПС.
- 3.1.1.1 Рама существующего ТПС должна быть сконструирована так, чтобы она выдерживала:
 - осевое усилие сжатия 2000 кН (рисунок 1, приложение А);
 - осевое усилие растяжения 1500 кН;
- приложение усилия 1000 кН на уровнях обоих боковых буферов лобовой стороны в соответствии с рисунком 3 приложения А;
- диагональное приложение усилия 400 кН при условиях, указанных на рисунке 4 приложения А.
- 3.1.1.2 Рама вновь выпускаемого ТПС должна быть сконструирована так, чтобы она выдерживала:
 - осевое усилие сжатия 2000 кН (рисунок 1 приложение А);

- осевое тяговое усилие 1500 кН (рисунок 2 приложение А);
- приложение силы 1000 кН на уровнях обоих боковых буферов лобовой стороны в соответствии с рисунком 3 приложения А;
- диагональное приложение силы 400 кН при условиях, указанных на рисунке 4 приложения А.

Указанные выше величины представляют собой минимальные требования к прочности рам.

- 3.1.2 На съемные узлы на раме ТПС, которые предусмотрены как деформирующие звенья, вышеуказанные требования к прочности не распространяются.
- 3.1.3 Рама существующего или вновь выпускаемого ТПС должна быть сконструирована так, чтобы она могла вместить автосцепку и выдержать усилия, действующие через автосцепку.

3.2 Прочность

- 3.2.1 Действующие напряжения в составных частях на соединяющих местах ТПС должны быть в пределах:
- при обыкновенных нагрузках (рабочих) меньше допускаемых напряжений для длительной прочности;
- при кратковременных больших нагрузках (выше рабочих) меньше предела текучести примененного сорта материала с коэффициентом запаса 1.1.

3.3 Размещение автосцепки

- 3.3.1 Высота точки сцепления автосцепки должна соответствовать следующим условиям:
- *минимальная высота* над верхней поверхностью головки рельса, при 2/3 запаса экипировки, измеряемая в состоянии покоя при максимальном износе бандажа колеса, 980 мм;
- *максимальная высота* над верхней поверхностью головки рельса, без запаса экипировки, измеряемая в состоянии покоя и в новом состоянии бандажа, 1080 мм.
- 3.3.2. Разница по высоте между продольными осями автосцепок грузового поезда допускается не более 100 мм, а между локомотивом и первым груженым вагоном 110 мм.

3.4 Размещение боковых буферов

3.4.1 Размещение боковых буферов не изменяется при подготовке к монтажу автосцепки. Высота буферов над верхней поверхностью головки рельса может быть в пределах от 940 мм до 1065 мм.

3.4.2 Высота буферов над верхней поверхностью головки рельса, измеренная и установленная для соответствующего вновь сконструированного ТПС, при 2/3 запаса экипировки, является одновременно высотой точки спепления автоспепки.

Если высота буферов у существующего ТПС была установлена величиной выше 1045 мм, то центральную линию сцепки, от шарнира (клина) до точки сцепления, следует опустить до высоты 1045 мм.

3.5 Оставляемое и требуемое свободное пространство

3.5.1 Рамы и кузова ТПС должны быть сконструированы и изготовлены так, чтобы имелась возможность размещения поглощающего аппарата и комплектующих деталей автосцепки, обеспечивались простота монтажа и демонтажа, а также техническое содержание и контроль в эксплуатации и на ремонтных предприятиях.

3.6 Монтаж и демонтаж автосцепки

- 3.6.1 Для соединения или разъединения автосцепного устройства с поглощающим аппаратом валик шарнира (клин) должен монтироваться и демонтироваться сверху или снизу.
- 3.6.2 Допускается другой способ монтажа и демонтажа валика шарнира (клина) в зависимости от типа поглощающего аппарата.
- 3.6.3 Валик шарнира (клин) может также монтироваться и демонтироваться сверху или снизу перед буферным брусом (при выдвинутом поглощающем аппарате).

3.7 Монтаж и демонтаж поглощающего аппарата

3.7.1 Подбор типа поглощающего аппарата и свободные пространства для его монтажа на ТПС устанавливаются каждой железнодорожной администрацией в соответствии с местными условиями и с учетом требований Памятки ОСЖД Р 687 «Рекомендации по техническим требованиям к тяговоударным устройствам автоматической сцепки для локомотивов».

3.8 Область отклонения автосцепки

- 3.8.1 Для обеспечения допускаемой величины качения автосцепки необходимо предусмотреть соответствующее свободное пространство перед уровнем буферного укрепления.
- 3.8.2 Размеры, необходимые для определения свободного пространства, при конструкторских разработках, содержатся в приложениях Б.
- 3.8.3 Максимальный угол отклонения определяется с учетом боковых (горизонтальных) и вертикальных смещений двух единиц ТПС, находящихся на

неблагоприятных участках пути (в кривых) и соединяемых при помощи автосцепки.

4 УСЛОВИЯ СЦЕПЛЕНИЯ В ОТНОШЕНИИ СФЕРЫ ЗАХВАТА С УЧЕТОМ РАССТОЯНИЯ МЕЖДУ ОСЯМИ И ШКВОРНЯМИ ТЕЛЕЖКИ И КОНСОЛИ

4.1 Общие положения

- 4.1.1 Надежность сцепления автосцепок без внешней дополнительной помощи связана с полем захвата и их взаимным положением перед сцеплением.
- 4.1.2 Взаимные смещения обеих автосцепок, как в перпендикулярном, так и горизонтальном направлениях, не должны выходить за пределы захвата.

4.2 Сцепление по вертикали

4.2.1 Технические требования, установленные для автосцепок, предусматривают, что две автосцепки с разницей высоты точек сцепления максимум 140 мм должны сцепляться.

Максимальная разница высот точки сцепления между двумя единицами подвижного состава должна быть не более 140 мм (см. пункт 3.3).

4.3 Сцепление по горизонтали

- 4.3.1 Технические требования, установленные для автосцепки, предусматривают, что их сфера захвата с обеих сторон продольной оси единицы ТПС должна составлять 220 мм.
- 4.3.2 Сцепление единиц ТПС с автосцепкой должно быть возможным в прямых и на месте перехода между прямыми и кривыми путями радиусом 135 м. Кроме того, должно быть возможным сцепление (расцепление) при помощи внешней дополнительной силы также на переходе с прямого пути на кривую радиусом в пределах от 135 м до 90 м и в кривой радиусом от 135 м до 90 м.

Для расчета наибольших горизонтальных смещений обеих автосцепок действуют принципы расчета согласно требованиям Памятки ОСЖД/МСЖД 530.

5 ТРЕБОВАНИЯ К МОНТАЖУ АВТОСЦЕПКИ И ЕЕ ДОПОЛНИТЕЛЬНОМУ ОБОРУДОВАНИЮ

5.1 Монтаж автосцепки в ТПС зависит от типа используемого поглощающего аппарата и его конструктивных особенностей. Автосцепка имеет хвостовик нормальной длины 1025 мм или укороченный.

- 5.2 Требования к монтажу деталей крепления поглощающих аппаратов определяются типом используемого поглощающего аппарата с учетом требований Памятки ОСЖД Р 687.
- 5.3 Монтаж и демонтаж валика шарнира (клина) выполняются с учетом требований, указанных в п. 3.6.
- 5.4 Электропневматическое управление обеспечивает расцепление автосцепки из кабины машиниста.

Расцепление автосцепки вручную обеспечивается снаружи ТПС.

6 ТРЕБОВАНИЯ К РАЗМЕЩЕНИЮ ВОЗДУШНЫХ И ЭЛЕКТРИЧЕСКИХ МАГИСТРАЛЕЙ

6.1 Воздушные магистрали

- 6.1.1 Воздухозапорные клапаны для тормозной магистрали и для магистрали главного воздушного резервуара размещаются на торцевых сторонах ТПС в соответствии с требованиями Памятки МСЖД 648.
- 6.1.2 С обеих сторон снаружи ТПС следует предусмотреть возможность ручного открытия и закрытия воздухозапорных кранов.
- 6.1.3 Для управления системой замка автосцепки пневматический цилиндр, к которому от электромагнитного клапана следует подвести трубопроводы и шланги, размещают на головке сцепки.

Пневматическая часть управления должна выдерживать давление главного воздушного резервуара, максимального для соответствующего типа ТПС.

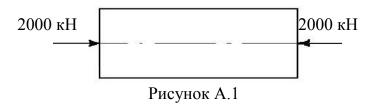
6.2 Электрические магистрали

- 6.2.1 Задачи электромагистрали и ее соединений:
- передача импульсов управления для электропневматического тормоза (э.п.т.);
 - передача тока для контроля поезда;
 - для других целей.
- 6.2.2 С целью подвода электромагистрали к тормозному крану машиниста вблизи кабины машиниста устанавливается распределительная коробка.
 - 6.2.3 На ТПС следует предусмотреть:
- приспособление для обеспечения безопасности при включении с центральным выключающим устройством;
 - автоматическую перемычку (мостик) короткого замыкания;
 - приспособление полного контроля поезда;
- селективное расцепляющее устройство с датчиками импульсов, приемниками импульсов и импульсионными трансформаторами тока.

- 6.2.4 Соединяющую штепсельную розетку и выход провода к штепселю соединительного рукава вагонного отопления следует укладывать согласно требованиям памяток МСЖД 552 или 648.
- 6.2.5 Соединяющую штепсельную розетку и выход кабеля для штепселя с целью соединения цепей управления следует разместить в соответствии со свободным пространством и требованиями Памятки МСЖД 648.

6.3 Электрическая часть электропневматического управления

6.3.1 Для осуществления процессов управления расцеплением автосцепки на пультах управления машиниста следует разместить необходимые переключатели и при помощи устройства предохранить их от случайного и не преднамеренного переключения.


Исключить возможность работы тумблера расцепления в недействующей кабине. Электропневматические вентили следует разместить вблизи от торцевых сторон ТПС.

ПРИЛОЖЕНИЕ А

(справочное)

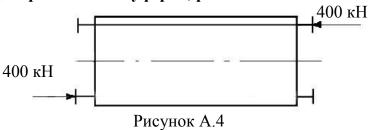
СТАТИЧЕСКИЕ УСИЛИЯ ДЛЯ ИСПЫТАНИЯ ДЕТАЛЕЙ ДЕРЖАТЕЛЯ И ПРИЕМКИ АВТОСЦЕПКИ

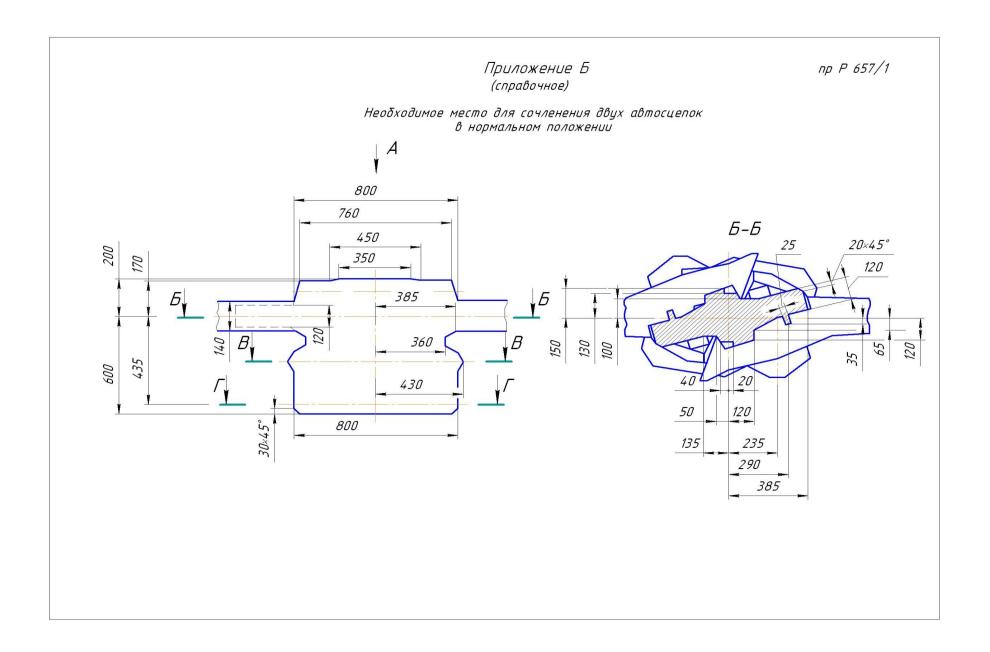
Усилия при испытании на осевое давление

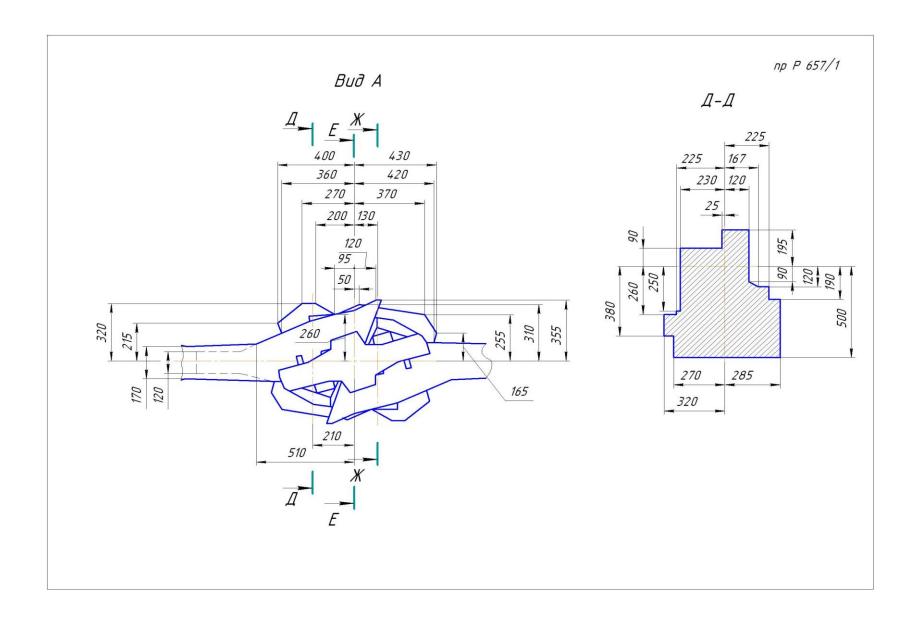
Усилие 2000 кН направляется аксиально (симметрично оси) на упоры давления автосцепки

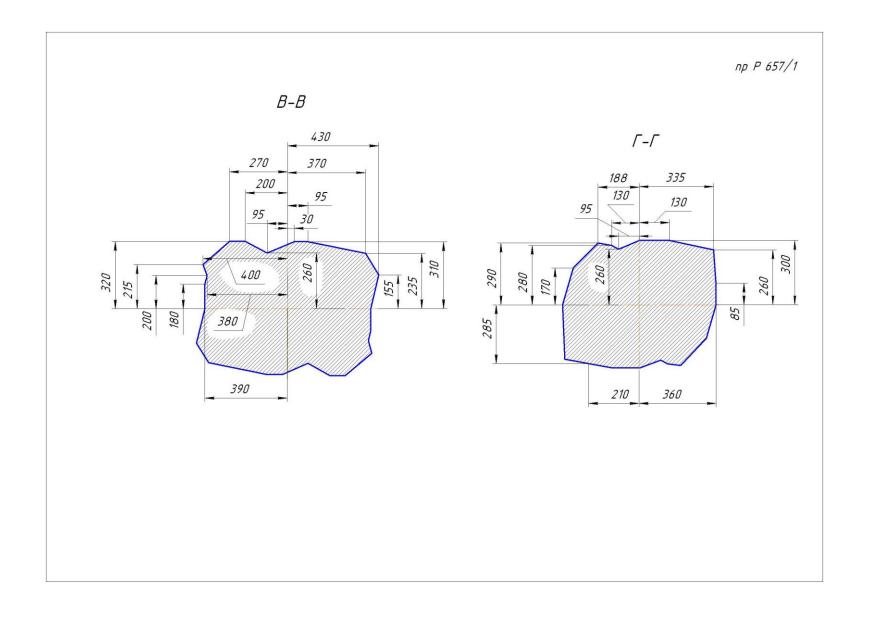
Распределение усилий при испытании на растяжение оси

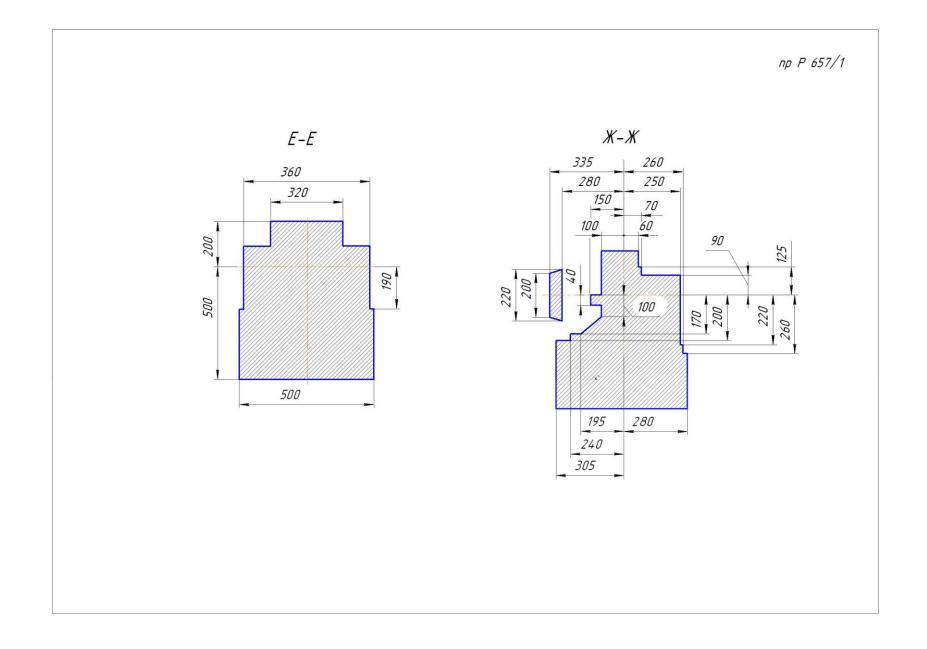
Усилие 1500 кН действует симметрично оси на тяговые упоры автосцепки


Распределение усилий при испытании на сжатие 1000 кН в направлении центра каждого бокового буфера




Усилие на 1000 кН действует в направлении центра бокового буфера и усилие 2000 кН - аксиально на упоры давления автосцепки.


Когда ТПС работает с буферами, буферный брус рассчитан на усилие 1000 кН по буферам, а также на центральную сжимающую силу 2000 кН.


Распределение усилий при испытании на сжатие по диагонали 400 кН в направлении центра боковых буферов, расположенных по диагонали

