ОРГАНИЗАЦИЯ СОТРУДНИЧЕСТВА ЖЕЛЕЗНЫХ ДО	РОГ (ОСЖД)
I издание	
Разработано экспертами Комиссии ОСЖД по инфраструктуре и подвижному составу 5-7 сентября 2005 г., г. Варна, Республика Болгария	P 549/2
Утверждено совещанием Комиссии ОСЖД по инфраструктуре и подвижному составу 10 ноября 2005 г.	
Дата вступления в силу: 10 ноября 2005 г.	
МЕТОДИКА РАСЧЕТА ТОРМОЗОВ ПАССАЖИРСКИХ ВАГОНОВ КОЛЕИ 15	520 MM

1. Общие и нормативные положения

- 1.1. Настоящая методика рекомендуется к применению при проектировании тормозных систем новых и проходящих модернизацию эксплуатируемых типов пассажирских вагонов локомотивной тяги с колодочным тормозом, предназначенных для эксплуатации на железных дорогах с шириной колеи 1520 мм с максимальными скоростями до 160 км/ч.
- 1.2. По настоящей методике производятся расчеты механической части автоматических пневматических тормозов и ручных тормозов вагонов.
- 1.3. Расчет тормоза производится по следующим этапам для подтверждения обеспечения:
 - требуемой тормозной эффективности вагона в составе поезда;
 - безъюзового торможения вагона (отсутствие юза колес при торможениях);
 - допустимой мощности, приходящейся на колодку при торможении;
 - удержания вагона ручным тормозом на уклоне расчетной крутизны.
- 1.4. Исходные для расчета автоматического тормоза нормативные параметры тормозной системы для вагонов с композиционными и чугунными тормозными колодками, приведены в табл. 1.

Таблица 1 - Минимальные, допускаемые по эффективности торможения, значения расчетных коэффициентов силы нажатия чугунных и композиционных тормозных колодок пассажирских вагонов

Тип тормоза		ичина δ _p]
	Чугунные стандартные	Композиционные колодки
	колодки	
Электропневматический	0,80/-	0,28/-
Пневматический	0,85/0,6	0,30/0,22

Примечание: в числителе - для максимальных скоростей 140-160 км/ч, в знаменателе - 120 км/ч.

2. Методика расчета автоматического тормоза

2.1. Тормозная эффективность вагона

2.1.1. Критерием обеспечения требуемой тормозной эффективности вагона является выполнение условия для расчетного коэффициента силы нажатия колодок:

$$\delta_{p} = \frac{K_{p}n}{T+O} \ge \left[\delta_{p}\right],\tag{1}$$

где:

δ_р - расчетный коэффициент силы нажатия колодок;

Кр - расчетная сила нажатия тормозной колодки, тс;

n - число тормозных колодок на вагоне;

T - сила тяжести порожнего вагона, (тара), тс;

Q - сила тяжести от заселенности вагона (загрузка), тс;

 $[\delta_p]$ - минимально допускаемая величина расчетного коэффициента силы нажатия колодок по обеспеченности тормозным нажатием.

2.1.2. Расчет эффективности тормоза вагонов проводится для композиционных и чугунных тормозных колодок.

Для вагонов с «потележечным» торможением (воздействие одного или нескольких тормозных цилиндров на каждую тележку) расчет проводится для одной или каждой тележки с учетом тары и загрузки, приходящейся на каждую тележку.

Расчетная загрузка Q принимается в соответствии с техническим заданием.

- 2.1.3. Значения [δ_p] для вагонов с композиционными и чугунными тормозными колодками приведены в таблице 1.
 - 2.1.4. Расчетная сила нажатия на тормозную колодку определяется по формулам:
 - для композиционных тормозных колодок –

$$K_{p} = 1,22K \frac{K+20}{4K+20},$$
 (2)

- для чугунных стандартных колодок -

$$K_p = 2,22K \frac{K+6,25}{5K+6,25},$$
 (3)

где K - действительная сила нажатия на одну колодку, тс.

2.1.5. Действительная сила нажатия на одну колодку определяется по формуле:

$$K = \frac{1}{m} \left(7.85 d_u^2 p_u \eta_u - F_1 - F_2 \right) n \eta_n, \text{ TC}$$
 (4)

где:

m - число тормозных колодок вагона, на которые действует усилие от одного тормозного цилиндра;

d₁₁ - диаметр тормозного цилиндра, м;

 $p_{\rm q}$ - расчетное давление воздуха в тормозном цилиндре, принимается в общем случае 3,8 кгс/см² - при определении эффективности тормоза и 4,2 кгс/см² - при проверке на отсутствие юза колесных пар. При других значениях предельных давлений в тормозных цилиндрах соответственно принимаются минимальное и максимальное давления в них;

 $\eta_{_{\rm II}}$ - к.п.д. тормозного цилиндра, рекомендуется принимать $\eta_{_{\rm II}} = 0.98;$

 ${\it F}_1$ - усилие сжатия внутренней отпускной пружины тормозного цилиндра, те;

 F_2 - усилие пружины авторегулятора рычажной передачи, приведенное к штоку тормозного цилиндра, тс;

n - передаточное число рычажной передачи;

 η_{π} - к.п.д. рычажной передачи, следует принимать:

- для передачи с одним тормозным цилиндром на вагоне или на тележку $\eta_{\pi} = 0.9$;
- при размещении нескольких тормозных цилиндров на тележке $\,\eta_{\scriptscriptstyle \Pi} = 0.95.$

Усилия пружин определяются по формулам:

- внутренней пружины тормозного цилиндра

$$F_1 = P_{II} + C_{II} I_{IIIT}, \qquad (5)$$

- пружины авторегулятора, приведенное к штоку тормозного цилиндра

$$F_2 = (P_p + C_p l_p) n_p, \tag{6}$$

Обозначения в формулах (5) и (6) следующие:

 $P_{\rm II}, P_{\rm p}\;$ - соответственно усилия предварительного сжатия внутренней пружины тормозного цилиндра и пружины авторегулятора, тс;

 $C_{\rm u}, C_{\rm p}$ - жесткости соответствующих пружин, тс/м;

 $l_{
m mr}$ - расчетный выход штока тормозного цилиндра, м;

 $l_{\rm p}$ - величина сжатия пружин авторегулятора при торможении, м;

 $n_{\rm p}$ - передаточное число привода авторегулятора.

2.2. Отсутствие юза при торможении

- 2.2.1. Расчеты на отсутствие юза колесных пар вагона при торможении выполняются:
 - для минимальной нагрузки на ось вагона от тары;
 - при максимальном расчетном давлении в тормозных цилиндрах по п. 2.1.5;
 - для скоростей движения вагонов 40, 120 и 140 и 160 км/ч.

При неравномерном распределении тары на тележки вагона расчеты производятся отдельно для каждой тележки вагона.

2.2.2. Условие отсутствия юза:

$$\delta_{\rm p} \varphi_{\rm KD} < [\psi_{\rm K}], \tag{7}$$

где:

 $[\psi_{\kappa}]$ - расчетный предельный коэффициент сцепления колес с рельсами при торможении;

 $arphi_{
m kp}$ - расчетный коэффициент трения тормозных колодок, определяемый по формулам:

- для композиционных колодок -

$$\varphi_{\rm kp} = 0.36 \frac{V + 150}{2V + 150},\tag{8}$$

- для чугунных стандартных колодок –

$$\varphi_{\rm kp} = 0.27 \frac{V + 100}{5V + 100},\tag{9}$$

где V - скорость движения, км/ч.

2.2.3. Расчетный предельный коэффициент сцепления колес с рельсами при торможении для проверки отсутствия юза определяется из выражения:

$$[\Psi] = \Psi(q_0) \, \Psi(v), \tag{10}$$

$$\psi(q_0) = 0.17 - 0.0015(q_0 - 5), \tag{11}$$

$$\psi(V) = \frac{V + 576}{4V + 576},\tag{12}$$

где:

q₀ - нагрузка на колесную пару (осевая нагрузка) вагона, тс;

v - скорость, км/ч.

Рекомендуется, чтобы при отсутствии противоюзных устройств выполнялось условие:

$$\delta_{\rm p} \phi_{\rm kp} \leq 0.85 [\psi_{\rm k}]$$

2.3. Мощность, приходящаяся на колодку при торможении

2.3.1. Количество тормозных колодок при расчете тормозной системы определяется исходя из средней мощности, приходящейся на одну колодку при экстренном торможении с максимальной допускаемой скорости:

$$N = \frac{q_{o}V_{o}^{3}}{183S \text{ m}} \le [N], \tag{13}$$

где:

 q_0 - максимальная расчетная осевая нагрузка вагона, тс;

 $V_{\rm O}$ - максимально допускаемая скорость, км/ч;

 $S_{\scriptscriptstyle T}$ - минимальный расчетный тормозной путь вагона с полной загрузкой в составе поезда на площадке, м;

та исло колодок, воздействующих на колесную пару;

[N] - предельно допускаемая средняя мощность, приходящаяся на одну колодку при экстренном торможении.

- 2.3.2. Величина [N] принимается равной 70кВт для композиционных колодок и 35 кВт для чугунных стандартных тормозных колодок.
- 2.3.3. Минимальный расчетный тормозной путь вагона на площадке определяется по номограммам тормозных путей, приведенным на рисунках 1 и 2, или по таблицам 2-5, принимая расчетный тормозной коэффициент поезда равным расчетному коэффициенту нажатия колодок вагона при максимальном давлении в цилиндрах.

3. Методика расчета ручного тормоза

- **3.1. Расчет ручных тормозов проводится,** исходя из условия удержания вагона с полной расчетной загрузкой на уклоне крутизной не менее расчетного значения при моменте сил, прикладываемом к рукоятке тормоза, равном 10 кгс⋅м. Расчетное значение крутизны уклона, на котором должен удерживаться вагон ручным тормозом, принимается, как правило, не менее 0,030.
- 3.2. Расчет ручных тормозов проводится по действительным силам нажатия колодок от действия ручного тормоза из условия равенства скатывающих и тормозных сил, действующих на вагон с полной расчетной нагрузкой на уклоне расчетной крутизны:

$$\sum K_c \phi_{\kappa c} = (T + Q)i \tag{14}$$

где:

 ΣK_c - сумма действительных сил нажатия колодок от действия ручного тормоза, те;

фкс
 действительный статический коэффициент трения колодок;
 крутизна уклона.

- 3.3. Величина K_c определяется в соответствии с кинематической схемой привода ручного тормоза. При этом к.п.д. механизма стояночного тормоза принимается не более 20% к.п.д. автоматического тормоза.
- 3.4. Действительный статический коэффициент трения колодок определяется по формулам:
 - для композиционных колодок -

$$\varphi_{\kappa c} = 0.44 \frac{K_c + 20}{4K_c + 20},\tag{15}$$

- для чугунных стандартных колодок -

$$\varphi_{\kappa p} = 0.6 \frac{K_c + 6.25}{5K_c + 6.25},\tag{16}$$

3.5. Крутизна пути, на котором удерживается вагон ручным тормозом:

$$i = \frac{\sum K_c \varphi_{\kappa c}}{T + O} \ge [i] \tag{17}$$

где: [*i*]

- расчетное значение крутизны уклона, принимаемое, как правило, не менее 0,030.

Номограмма тормозных путей **пассажирских** поездов при **композиционных** колодках на **площадке** (сплошные линии-электропневматическое торможение; штриховые - пневматическое)

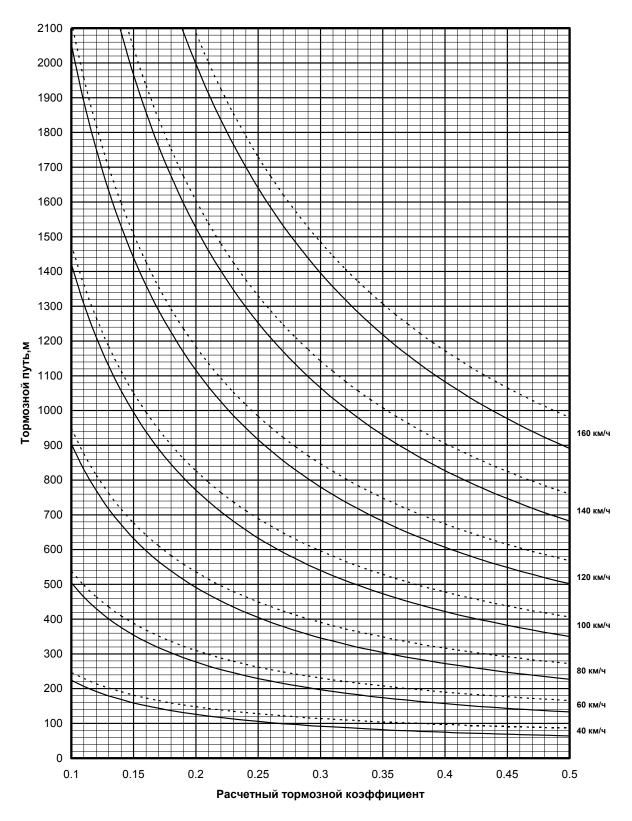


Рисунок 1

Номограмма тормозных путей **пассажирских** поездов при **чугунных** колодках на **площадке**

(сплошные линии-электропневматическое торможение; штриховые - пневматическое)

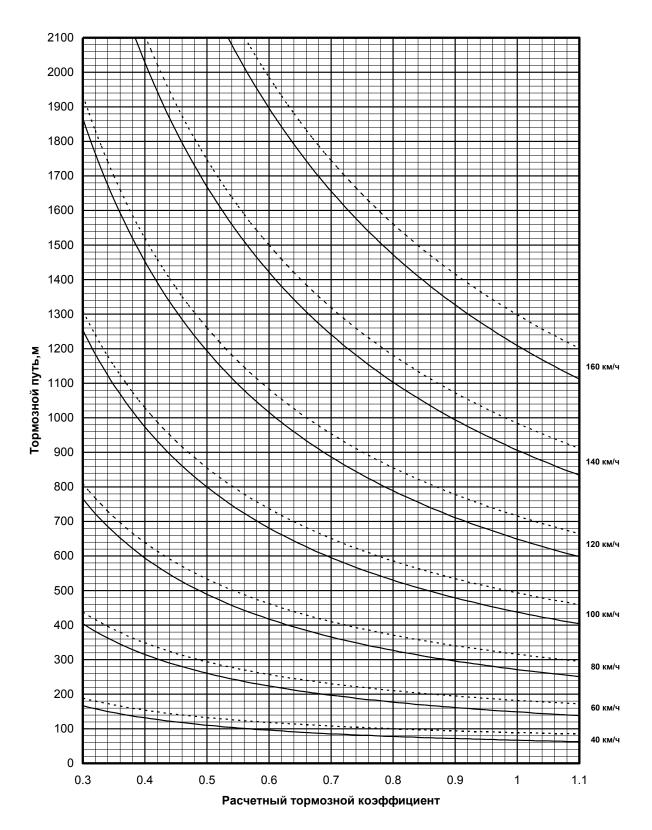


Рисунок 2

Таблица 2. Тормозные пути пассажирских поездов с композиционными колодками на площадке, электропневматическое торможение

٧,						Расч	т йынт	ормозно	ой коэф	фициен	Г					
км/ч	0.2	0.22	0.24	0.26	0.28	0.3	0.32	0.34	0.36	0.38	0.4	0.42	0.44	0.46	0.48	0.5
40	126	117	109	102	97	92	88	84	80	77	75	72	70	68	66	64
45	158	146	136	128	120	114	109	104	100	96	92	89	86	84	81	79
50	193	179	166	156	147	139	132	126	121	116	112	108	104	101	98	95
55	233	215	200	187	176	167	159	151	145	139	133	128	124	120	116	113
60	277	255	237	222	209	197	187	178	170	163	157	151	146	141	137	133
65	324	299	277	259	244	230	218	208	199	190	183	176	169	164	159	154
70	376	346	321	300	282	266	252	240	229	219	210	202	195	188	182	177
75	431	397	368	344	323	305	289	274	262	250	240	231	222	215	208	201
80	491	452	419	391	367	346	328	312	297	284	272	262	252	243	235	227
85	555	511	473	442	414	390	370	351	335	320	306	294	283	273	264	255
90	623	573	531	495	464	438	414	393	375	358	343	329	317	305	295	285
95	695	639	592	552	518	487	461	438	417	398	381	366	352	339	328	317
100	771	709	657	612	574	540	511	485	462	441	422	405	390	375	362	350
105	851	782	725	675	633	596	563	535	509	486	465	446	429	413	399	385
110	936	860	796	742	695	654	619	587	559	533	510	489	470	453	437	422
115	1024	941	871	812	761	716	677	642	611	583	558	535	514	495	477	461
120	1116	1026	950	885	829	780	737	699	665	635	607	582	559	538	519	502
125	1213	1115	1032	961	900	847	800	759	722	689	659	632	607	584	563	544
130	1313	1207	1117	1041	975	917	866	822	781	745	713	683	656	632	609	588
135	1417	1303	1206	1124	1052	990	935	887	843	804	769	737	708	681	657	634
140	1526	1402	1298	1209	1133	1066	1007	954	907	865	827	793	761	733	706	682
145	1638	1506	1394	1299	1216	1144	1081	1024	974	929	888	851	817	786	758	731
150	1754	1612	1493	1391	1302	1225	1157	1097	1043	995	951	911	875	841	811	783
155	1874	1723	1595	1486	1392	1309	1237	1172	1114	1063	1016	973	934	899	866	836
160	1997	1836	1701	1584	1484	1396	1319	1250	1188	1133	1083	1037	996	958	923	891

Таблица 3. Тормозные пути пассажирских поездов с композиционными колодками на площадке, пневматическое торможение

V,						Pac	чётный	тормоз	ной коэ	ффицие	HT					
км/ч	0.2	0.22	0.24	0.26	0.28	0.3	0.32	0.34	0.36	0.38	0.4	0.42	0.44	0.46	0.48	0.5
40	148	139	131	125	119	114	110	106	103	100	97	94	92	90	88	87
45	183	171	161	153	145	139	134	129	125	121	117	114	111	109	106	10 4
50	221	206	194	184	175	167	160	154	149	144	140	136	132	129	126	12 3
55	264	246	231	218	207	197	189	182	175	169	164	159	155	151	147	14 4
60	310	288	270	255	242	231	221	212	204	197	190	184	179	174	170	16 6
65	360	335	314	295	280	266	255	244	235	226	219	212	206	200	195	19 0
70	415	385	360	339	321	305	291	279	268	258	249	241	234	227	221	21 5
75	473	439	410	386	365	346	330	316	303	292	282	273	264	256	249	24 3
80	536	496	464	436	412	391	372	356	341	328	317	306	296	288	279	27 2
85	602	558	520	489	461	438	417	398	382	367	354	342	331	320	311	30 3
90	673	623	581	545	514	488	464	443	425	408	393	379	367	355	345	33 5
95	748	692	645	605	570	540	514	491	470	451	434	419	405	392	380	37 0
100	827	764	712	668	629	596	566	540	517	496	478	461	445	431	418	40 6
105	910	841	783	734	691	654	622	593	567	544	523	504	487	471	457	44 4

110	997	921	857	803	756	716	680	648	620	594	571	550	531	514	498	48 3
115	1088	1005	935	876	824	780	740	706	675	647	621	599	578	559	541	52 5
120	1183	1093	1017	952	896	847	804	766	732	701	674	649	626	605	586	56 8
125	1282	1184	1101	1031	970	917	870	828	792	758	728	701	676	653	633	61 3
130	1385	1279	1189	1113	1047	989	939	894	854	818	785	755	729	704	681	66 0
135	1492	1378	1281	1199	1127	1065	1010	962	918	879	844	812	783	756	732	70 9
140	1604	1480	1376	1287	1210	1143	1084	1032	985	943	905	871	839	810	784	76 0
145	1718	1586	1474	1379	1297	1225	1161	1105	1055	1009	969	931	898	867	838	81 2
150	1837	1696	1576	1474	1386	1309	1241	1180	1126	1078	1034	994	958	925	894	86 6
155	1960	1809	1681	1572	1478	1395	1323	1258	1201	1149	1102	1059	1020	985	952	92 2
160	2086	1925	1790	1673	1573	1485	1407	1339	1277	1222	1172	1126	1085	1047	1012	98 0

 Таблица 4. Тормозные пути пассажирских поездов с чугунными колодками на площадке,

 электропневматическое торможение

٧,						Расчёті	ный тор	омозной	і коэфф	ициент					
км/ч	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1
40	167	147	132	120	110	102	96	90	85	81	78	74	72	69	67
45	215	189	169	153	141	131	122	115	108	103	98	94	90	87	84
50	271	237	212	192	176	163	152	143	135	128	121	116	111	107	103
55	334	292	261	236	216	200	186	174	164	155	148	141	135	129	125
60	404	354	315	285	261	241	224	209	197	186	177	169	161	155	149
65	483	422	376	339	310	286	266	249	234	221	210	200	191	183	175
70	569	497	442	399	365	336	312	292	274	259	245	233	223	213	205
75	663	579	515	465	424	391	363	339	318	300	284	270	258	247	237
80	766	669	594	536	489	450	417	390	366	345	327	310	296	283	271
85	876	765	680	613	559	514	477	445	417	393	372	354	337	322	309
90	994	868	772	695	634	583	540	504	473	445	421	400	381	364	349
95	1120	978	869	784	714	657	609	567	532	501	474	450	429	409	392
100	1254	1095	974	878	800	735	681	635	595	560	530	503	479	457	438
105	1396	1220	1084	977	890	819	758	707	662	624	589	559	532	508	486
110	1545	1351	1201	1082	986	907	840	783	733	690	652	619	589	562	538
115	1703	1489	1324	1193	1087	1000	926	863	808	761	719	682	649	619	592
120	1867	1633	1453	1310	1194	1097	1016	947	887	835	789	748	711	679	649
125	2040	1785	1588	1432	1305	1200	1111	1035	970	912	862	817	777	742	709
130	2219	1943	1729	1560	1422	1307	1210	1128	1056	994	939	890	847	807	772
135	2406	2107	1876	1693	1543	1419	1314	1224	1147	1079	1019	966	919	876	838
140	2599	2278	2029	1831	1669	1535	1422	1325	1241	1168	1103	1046	994	948	906
145	2800	2455	2188	1975	1801	1656	1534	1430	1339	1260	1190	1128	1073	1023	978
150	3007	2638	2352	2124	1937	1782	1651	1538	1441	1356	1281	1214	1154	1101	1052
155	3220	2827	2522	2278	2078	1912	1772	1651	1547	1455	1375	1303	1239	1181	1129
160	3440	3022	2697	2437	2224	2047	1896	1768	1656	1558	1472	1396	1327	1265	1209

 Таблица 5. Тормозные пути пассажирских поездов с чугунными колодками на площадке,

 пневматическое торможение

V,						Расчёті	ный тор	мозной	і коэфф	ициент					
км/ч	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1
40	189	169	154	142	132	125	118	113	108	104	100	97	94	91	89
45	240	214	194	178	166	156	147	140	133	128	123	119	115	112	109
50	298	265	240	220	204	191	180	170	162	155	149	144	139	135	131
55	364	323	291	266	246	230	216	205	195	186	178	171	165	160	155
60	438	387	349	318	294	274	257	243	230	220	210	202	195	188	182
65	519	458	412	376	346	322	302	285	270	257	246	236	227	219	212
70	608	536	481	438	404	375	351	330	313	298	284	272	262	252	244
75	705	621	557	507	466	432	404	380	360	342	326	312	300	288	278
80	810	713	639	581	533	495	462	434	410	389	371	355	340	328	316
85	923	812	727	660	606	561	524	492	465	441	420	401	384	369	356
90	1044	918	822	745	684	633	590	554	523	495	471	450	431	414	399
95	1173	1031	922	836	767	710	661	620	585	554	527	503	481	462	445
100	1310	1151	1029	933	855	791	737	691	651	616	586	559	534	513	493
105	1454	1278	1143	1036	949	877	817	765	721	682	648	618	591	566	545
110	1607	1412	1262	1144	1047	968	901	844	794	751	713	680	650	623	599
115	1767	1552	1388	1257	1151	1064	990	927	872	825	783	746	713	683	656
120	1934	1700	1520	1377	1260	1164	1083	1013	954	901	855	815	778	745	716
125	2109	1854	1658	1501	1375	1269	1180	1105	1039	982	932	887	847	811	779
130	2291	2015	1801	1632	1494	1379	1282	1200	1128	1066	1011	962	919	880	844
135	2481	2182	1951	1768	1618	1494	1389	1299	1222	1154	1094	1041	994	951	913
140	2677	2355	2107	1909	1747	1613	1500	1403	1319	1245	1181	1123	1072	1026	984
145	2880	2535	2268	2055	1881	1737	1615	1510	1420	1341	1271	1209	1153	1104	1058
150	3090	2721	2435	2207	2021	1865	1734	1622	1524	1439	1364	1297	1238	1184	1136
155	3306	2913	2608	2364	2164	1998	1858	1737	1633	1541	1461	1389	1325	1268	1215
160	3529	3111	2786	2526	2313	2135	1985	1857	1745	1647	1561	1484	1416	1354	1298